MDM2 protein-mediated ubiquitination of numb protein: identification of a second physiological substrate of MDM2 that employs a dual-site docking mechanism.

نویسندگان

  • Matylda Sczaniecka
  • Karen Gladstone
  • Susanne Pettersson
  • Lorna McLaren
  • Anne-Sophie Huart
  • Maura Wallace
چکیده

The E3 ubiquitin ligase, MDM2, uses a dual-site mechanism to ubiquitinate and degrade the tumor suppressor protein p53, involving interactions with the N-terminal hydrophobic pocket and the acidic domain of MDM2. The results presented here demonstrate that MDM2 also uses this same dual-site mechanism to bind to the cell fate determinant NUMB with both the N-terminal hydrophobic pocket and the acidic domain of MDM2 also involved in forming the interaction with NUMB. Furthermore, the acidic domain interactions are crucial for MDM2-mediated ubiquitination of NUMB. Contrary to p53, where two separate domains form the interface with MDM2, only one region within the phosphotyrosine binding domain of NUMB (amino acids 113-148) mediates binding to both these regions of MDM2. By binding to both domains on MDM2, NUMB disrupts the MDM2-p53 complex and MDM2-catalyzed ubiquitination of p53. Therefore, we have identified the mechanism NUMB uses to regulate the steady-state levels of the p53 in cells. By targeting the acidic domain of MDM2 using acid domain-binding ligands we can overcome MDM2-mediated ubiquitination and degradation of NUMB impacting on the stabilization of p53 in cells. Furthermore, delivery of MDM2 acid domain-binding ligands to cancer cells promotes p53-dependent growth arrest and the induction of apoptosis. This highlights the dual-site mechanism of MDM2 on another physiological substrate and identifies the acid domain as well as N terminus as a potential target for small molecules that inhibit MDM2.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Role of Mdm2 acid domain interactions in recognition and ubiquitination of the transcription factor IRF-2.

Mdm2 (murine double minute 2)-mediated ubiquitination of the p53 tumour suppressor requires interaction of the ligase at two distinct binding sites that form general multiprotein-docking sites for the p53 protein. The first Mdm2-binding site resides in the transactivation domain of p53 and is an allosteric effector site for Mdm2-mediated p53 ubiquitination; the second site requires the acid dom...

متن کامل

Regulation of the E3 ubiquitin ligase activity of MDM2 by an N-terminal pseudo-substrate motif.

The tumor suppressor p53 has evolved a MDM2-dependent feedback loop that promotes p53 protein degradation through the ubiquitin-proteasome system. MDM2 is an E3-RING containing ubiquitin ligase that catalyzes p53 ubiquitination by a dual-site mechanism requiring ligand occupation of its N-terminal hydrophobic pocket, which then stabilizes MDM2 binding to the ubiquitination signal in the DNA-bin...

متن کامل

Non-degradative ubiquitination of the Notch1 receptor by the E3 ligase MDM2 activates the Notch signalling pathway.

The Notch receptor is necessary for modulating cell fate decisions throughout development, and aberrant activation of Notch signalling has been associated with many diseases, including tumorigenesis. The E3 ligase MDM2 (murine double minute 2) plays a role in regulating the Notch signalling pathway through its interaction with NUMB. In the present study we report that MDM2 can also exert its on...

متن کامل

Dual-site regulation of MDM2 E3-ubiquitin ligase activity.

The control of p53 ubiquitination by MDM2 provides a model system to define how an E3-ligase functions on a conformationally flexible substrate. The mechanism of MDM2-mediated ubiquitination of p53 has been analyzed by deconstructing, in vitro, the MDM2-dependent ubiquitination reaction. Surprisingly, ligands binding to the hydrophobic cleft of MDM2 do not inhibit its E3-ligase function. Howeve...

متن کامل

Insulin Receptor Tyrosine Kinase Substrate Enhances Low Levels of MDM2-Mediated p53 Ubiquitination

The tumor suppressor p53 controls multiple cellular functions including DNA repair, cell cycle arrest and apoptosis. MDM2-mediated p53 ubiquitination affects both degradation and cytoplasmic localization of p53. Several cofactors are known to modulate MDM2-mediated p53 ubiquitination and proteasomal degradation. Here we show that IRTKS, a novel IRSp53-like protein inhibited p53-induced apoptosi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 287 17  شماره 

صفحات  -

تاریخ انتشار 2012